Adsorption of 2,4-dichlorophenoxyacetic acid using rice husk biochar, granular activated carbon, and multi-walled carbon nanotubes in a fixed bed column system

Author:

Bahrami Mehdi1,Amiri Mohammad Javad1,Beigzadeh Bahareh1

Affiliation:

1. Department of Water Engineering, Faculty of Agriculture, Fasa University, Fasa, Iran

Abstract

Abstract The 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide, as an aromatic hydrocarbon, is a dangerous and toxic organic pollutant among the agricultural pesticides. In this research, the performance of the biochar made from rice husk (BRH), granular activated carbon (GAC), and multi-walled carbon nanotubes (MWCNTs) was investigated for adsorption of 2,4-D in a fixed-bed column system. The influence of pH (2, 5, 7, 9), flow rate (0.5, 1, 1.5 mL min−1), bed depth (3, 6, 9 cm), and influent 2,4-D concentration (50, 100, 150, 300 mg L−1) on the adsorption process was evaluated. The resulting breakthrough curves indicated that the higher removal efficiency of 2,4-D took place at the lower flow rate, lower influent 2,4-D concentration, higher bed depth, and lower pH. While in most cases the removal ability of GAC was better than other adsorbents, generally, this study confirmed that the BRH, as a cheap and sustainable material, can be a viable alternative to GAC and MWCNTs for remediation and treatment scenarios, particularly in developing countries.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3