Effect of inorganic salt ions on the adsorption of quinoline using coal powder

Author:

Bian Yue12,Sun Hao2,Luo Yunxiao2,Gao Qieyuan2,Li Guosheng2,Wang Yongtian3

Affiliation:

1. China Coal Research Institute Company of Energy Conservation, China Coal Research Institute, Beijing 100013, China

2. School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China

3. Chinese National Engineering Research Center of Coal Preparation and Purification, Xuzhou 221116, Jiangsu, China

Abstract

Abstract In this study, coal powder was used as the adsorbent for quinoline. The effect of inorganic salt ions on the adsorption was explored, and the results suggest that the addition of inorganic salt ions can enhance both the removal rate and the amount of quinoline adsorbed. The removal rate and adsorbed amount of quinoline were 83.87% and 1.26 mg/g without inorganic salt ions. Under the same adsorption conditions, the removal rate and adsorbed amount of quinoline could reach 90.21% and 1.35 mg/g when Na+ was present in the solution, and 94.47% and 1.42 mg/g with the presence of Ca2+. In addition, the adsorption of quinoline using coal fitted the Freundlich isothermal adsorption model. Changes in the Gibbs free energy, entropy and heat of adsorption were all negative, indicating that the adsorption was spontaneous and exothermic. The changes in the absolute value of Gibbs free energy under both Na+ and Ca2+ were higher than that in the blank(without inorganic salt ions). The pseudo-second-order kinetic model was found to fit the adsorption kinetic data well, and the activation energy of adsorption under Na+ and Ca2+ were lower than that in the blank. These indicate that the addition of inorganic salt ions was beneficial to the adsorption process.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3