Enhanced settling in activated sludge: design and operation considerations

Author:

Daigger Glen T.1,Redmond Eric2,Downing Leon3

Affiliation:

1. University of Michigan, 1351 Beal Avenue, Ann Arbor, MI 48109 USA

2. CH2M, Dallas, TX, USA

3. Black & Veatch, 826 Minakwa Dr, Madison, WI 53711 USA

Abstract

Abstract Settling of activated sludge particles has long been the key to successfully achieving secondary treatment. While soluble products can be converted to particulate components via microbial reactions in the activated sludge process, it is the subsequent removal of these particulate components that is the key to achieving ultimate water quality criteria. An understanding of the operating parameters for selecting good settling activated sludge particles was first documented in the 1970s and 1980s. An understanding of the growth pressures that can be imposed on filamentous organisms, and the impacts of selector zones in general, allowed the design and operation of activated sludge processes to routinely achieve good sludge settleability. More recently, research has identified what could be the next evolution in flocculant growth, with the growing interest in aerobic granular sludge. Aerobic granular sludge is purported to provide superior settling properties, and many of the growth pressures identified for aerobic granular sludge are also present in activated sludge systems. These enhanced settling sludge systems are gaining significant interest, but the factors leading to enhanced sludge settleability could be present in historical and existing systems. Three facilities were evaluated that exhibited enhanced settleability (i.e. sludge volume indices of less than 70 mL/g the majority of the time) to determine how these enhanced settling sludges compare to typical settling curves from the literature. The enhanced settling sludge facilities exhibit key differences related to surface overflow rate, return activated sludge (RAS) pumping requirements, and sensitivity to solids concentration that are critical for developing effective settling designs for enhanced settling sludge facilities. As more facilities aim to achieve enhanced settling sludge for intensification of infrastructure, it will be important to carefully consider historic settling curves and to develop site-specific settling criteria when possible.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3