Affiliation:
1. UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Australia
2. Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Poland
Abstract
Abstract
Malodorous emissions from biosolids limit potential re-use opportunities. Emissions from anaerobically stabilised biosolids have been widely studied. In contrast, emissions from aerobically stabilised biosolids have not been well documented. Individual odorants in complex emissions can be detected using sensorial analysis methods, such as gas chromatography mass spectroscopy coupled with an odour detection port (GC-MS/O) where assessors sniff the GC effluent to identify odorants present. In this study, GC-MS/O was used to study and compare emissions from biosolids produced from aerobically and anaerobically stabilised biosolids from different wastewater treatment plants (WWTPs). The WWTPs varied in size, catchments and dewatering technology. Three GC-MS/O assessors were used for the sensorial analysis. The identified odorants varied significantly between the two sites using aerobic stabilisation, in number of odour characters detected, as well as their intensity. Different odour characters were noted from biosolids generated at the aerobic digestion sites compared to characters from biosolids generated at the anaerobic digestion site. Biosolids from the aerobic digestion sites had medicinal, acrid or putrid type odours not noted from the anaerobic site. However, descriptors of biosolids emissions were commonly noted as: rotten vegetables, seaweed, garbage, garlic, or bad-breath. Many of the descriptors were associated with the presence of sulfur-type compounds. The importance of assessor variability was also highlighted in the paper where certain characters were not detected or were described differently by assessors.
Subject
Water Science and Technology,Environmental Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献