Advanced treatment of biologically treated coking wastewater by persulfate oxidation with magnetic activated carbon composite as a catalyst

Author:

Song Xiulan1,Wang Chao2,Liu Meiqin1,Zhang Miao1

Affiliation:

1. College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Tsing Yi Island, Hong Kong

Abstract

Abstract Advanced treatment of biologically treated coking wastewater (BTCW) using persulfate (PS) oxidation with magnetic activated carbon composite (CuFe2O4:AC w/w ratio of 1:1.5, denoted as 1.5-MACC) as a green catalyst was evaluated at ambient temperature (30 °C). Effects of PS (K2S2O8) and 1.5-MACC doses on PS decomposition and total organic carbon (TOC) removal in BTCW were also studied during 360 min. The results showed that the 1.5-MACC/PS system has a much better performance on TOC removal in BTCW than only 1.5-MACC or PS system. PS decomposition and TOC removal follow first-order kinetics in the 1.5-MACC/PS system. The optimum condition of the 1.5-MACC/PS system to treat BTCW is with a K2S2O8 dose of 4 g L−1 and 1.5-MACC dose of 5 g L−1. Under this condition, TOC in the PS oxidation effluent is 20.4 mg L−1 with a removal efficiency of 85.4%. TOC removal is a synergistic effect of adsorption and oxidation. TOC oxidation is due to the generation of ·SO4− via the activation of PS by CuFe2O4 impregnated AC. The gas chromatography–mass spectrometry (GC-MS) analysis revealed that phenol compounds and esters were removed significantly by the 1.5-MACC/PS system. When 1.5-MACC was used for the fourth time in the 1.5-MACC/PS system, the removal ratio of TOC was still over 62.2% in 360 min reaction. Thus, the 1.5-MACC/PS system has a potential practical application in treatment of BTCW.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference33 articles.

1. Bioaugmentation and adsorption treatment of coking wastewater containing pyridine and quinoline using zeolite-biological aerated filters;Environmental Science and Technology,2011

2. Monochlorophenols degradation by UV/persulfate is immune to the presence of chloride: illusion or reality?;Chemical Engineering Journal,2017

3. Adsorption-photocatalytic degradation of acid red 88 by supported TiO2: effect of activated carbon support and aqueous anions;Chemical Engineering Journal,2011

4. Interaction of adsorption and catalytic reactions in water decontamination processes. Part I. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon;Applied Catalysis B-Environmental,2005

5. Complete physico-chemical treatment for coke plant effluents;Water Research,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3