Removal of psychoactive pharmaceuticals from wastewaters using microbial electrolysis cells producing hydrogen

Author:

Akagunduz Dilan1,Cebecioglu Rumeysa1,Ozdemir Murat2,Catal Tunc13ORCID

Affiliation:

1. Istanbul Protein Research-Application and Inovation Center (PROMER), Uskudar University, Uskudar, 34662 Istanbul, Turkey

2. Personalized Medicine Application and Research Center (KIMER), Uskudar University, Uskudar, 34662 Istanbul, Turkey

3. Department of Molecular Biology and Genetics, Uskudar University, Uskudar, 34662 Istanbul, Turkey

Abstract

Abstract In this study, hydrogen production was analyzed along with methane and carbon dioxide generation using paroxetine, venlafaxine, and o-desmethylvenlafaxine (ODV) as substrates in single-chamber microbial electrolysis cells (MECs). Combinations of all three drugs were examined at concentrations of 750 ng/mL and 170 ng/mL. At the beginning of MEC operations using a 750 ng/mL mixture of drugs, there was no hydrogen or methane, but carbon dioxide was detected. When the concentration of the drug mixture was reduced to 170 ng/mL, MECs produced hydrogen and methane gas. Removal of the drugs during MEC operations was also analyzed using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Paroxetine, venlafaxine and ODV drugs were removed up to 99% by MECs. In conclusion, MECs could offer an alternative treatment method for wastewaters containing psychoactive pharmaceuticals with the added benefit of fuel hydrogen generation.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3