Affiliation:
1. Laboratoire Génie de la Réaction, Equipe procédés durables de dépollution, Faculté de Génie des Procédés et Génie Mécanique, U.S.T.H.B., BP 32, El Allia, Bab Ezzouar, Algeria
Abstract
Abstract
A synthetic wastewater based on Algiers refinery real effluent was prepared and treated using anodic oxidation. Full factorial plan design was used to conduct the statistical analysis of the results. The aim of the study was to assess the interaction between current density (CD) and stirring degree (SD), and quantify their effects on chemical oxygen demand (COD) removal and electric energy specific consumption (EESC). With an initial COD of 487 mg/L, pH of 5.5 and 0.05 M of Na2SO4 as supporting electrolyte, it was found that a 55 rpm stirring degree variation led to a substantial gain in COD removal and energy consumption: 6% and 8.5 KWh/kg, respectively. Current density was found to have a different effect on removal efficiency within the applied stirring domain, and mass transport coefficient (km) is inversely correlated to energy consumption. A theoretical model describing the process was reviewed and the relation between concentration, hydrodynamics and applied current was emphasized.
Subject
Water Science and Technology,Environmental Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献