Zinc and cadmium adsorption from wastewater using hydroxyapatite synthesized from flue gas desulfurization waste

Author:

Kızıltas Demir Sıla1,Tugrul Nurcan1

Affiliation:

1. Department of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Davutpasa Street No. 127, Esenler, 34220 Istanbul, Turkey

Abstract

Abstract The purpose of this work is to produce an alternative cost-effective adsorbent to remove zinc and cadmium from wastewater using hydroxyapatite (HAP) synthesized with hydrothermal method from FGD (Flue gas desulfurization) waste generated by two different coal power plants. The effects of FGD type (Cayırhan and Orhaneli) and molar ratio (H3PO4/CaSO4) (0.6–4.79) on HAP synthesis were investigated. Afterwards, effects of the adsorbent dose (1–2 g/L), heavy metal concentration (30, 40, 50 mg/L) and contact time (1, 2, 3, 4 h) on zinc and cadmium adsorption yield from synthetic wastewater using produced HAP were examined. FGD waste and synthesized FGD-HAP were characterized by X-Ray Diffraction (XRD), Fourier Transformed Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM) and Brunauer-Emmett-Teller (BET) instruments. The zinc and cadmium concentration was studied by Inductively coupled plasma atomic emission spectroscopy (ICP-AES). Maximum zinc adsorption capacity of the Cayırhan FGD-HAP was 49.97 and 49.99 mg/L, Orhaneli FGD-HAP was 49.96 and 49.99 mg/L, for 1 g/L and 2 g/L adsorbent dose, respectively, for 50 mg/L heavy metal concentration and 4 h contact time. Maximum cadmium adsorption capacity of the Cayırhan FGD-HAP was 39.98 and 39.99 mg/L, Orhaneli FGD-HAP was 40 and 39.99 mg/L, for 1 g/L and 2 g/L adsorbent dose, respectively, for 40 mg/L heavy metal concentration and 4 h contact time. Adsorption yields were calculated between 98.53% and 100%. The adsorption data were well explained by a second-order kinetic model, and the Freundlich isotherm model fits the equilibrium data. The adsorption results demonstrated that FGD's waste is an effective source to synthesize HAP, which is used as an adsorbent for zinc and cadmium removal from wastewater due to high adsorption capacity.

Funder

Yıldız Technical University Scientific Research Projects Coordinator

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3