Cultivation of energy microalga Chlorella vulgaris with low–toxic sludge extract

Author:

Chen Xiurong1,Wang Shanshan1,Sun Xiaoli1,Lu Quanling1

Affiliation:

1. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, China

Abstract

Abstract Chlorella vulgaris was cultivated in different proportions of activated sludge extracts, which was from the treatment of synthetic wastewater containing tetrachlorophenol. The growth period of C. vulgaris could be shortened for about 10 days when sludge extract was mixed into BG11 culture substrate, and the growth of C. vulgaris was promoted during the period of adaptation and logarithmic period. In the stable and decay period, when the proportion of sludge extract increased to 50%, cell proliferation was inhibited. There was an evident positive correlation between the total and average amount of starch polysaccharide with sludge concentration. When C. vulgaris was cultivated with pure sludge extracts, the total amount of starch and polysaccharide was up to 103 and 125 mg/L. Therefore, the low-toxic sludge extracts were more beneficial to the accumulation of carbohydrates. In the 100% sludge extracts culture medium, chlorophyll-a in C. vulgaris was accumulated to 30.2 mg/L on the 25th day. Through the analysis of algal cells' ultrastructures, it was shown that the photosynthesis was strengthened greatly with low-toxic sludge extracts. The results show that the rich heterotrophic carbon source in the sludge extract can be used as an excellent medium for Chlorella. It provides new ideas for the harmless utilization of surplus sludge as a resource. At the same time, the use of nutrients in the sludge extract to cultivate Chlorella is of great significance to low-cost algae cultivation.

Funder

This research was supported by the National Key Research and Development Program of China

the National Natural Science Foundation

the special S&T project on treatment and control of water pollution

Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference49 articles.

1. Improving biogas production performance of dairy activated sludge via ultrasound disruption prior to microwave disintegration (vol 81, pg 1231, 2020);Water Science and Technology,2020

2. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate;Aquaculture,2007

3. Determinación espectrofotométrica, de carbohidratos aprovechables en las algas Ulva sp y Chaetomorpha sp para la producción de etanol que funcione como biocombustible, por el método de la antrona. [Spectrophotometric determination the quantity of profitable carbohydrates in Ulva sp and sp Chaetomorpha algae for the production of ethanol that works as biocombustible by the method anthrone];Revista de Investigación,2017

4. Fossil energy saving and CO2 emissions reduction performance, and dynamic change in performance considering renewable energy input;Energy,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3