Abstract
Abstract
Magnetite nanoparticles (Fe3O4-NPs)/orange peel (MOP) composite was prepared via one-step in-situ co-precipitation method as magnetic heterogeneous Fenton-like catalyst. The properties of MOP were characterized by scanning electron microscopy, transmission electron microscopes, Brunauer–Emmett–Teller, X-ray diffraction, Fourier-transform infrared, thermogravimetric analysis and X-ray photoelectron spectroscopy technologies. Its Fenton-like catalytic responses towards removal of methyl orange (MO) were investigated, in which the effects of initial dye concentration, pH, temperature and hydrogen peroxide dosage were studied. The MO degradation ratio up to 98.0% was obtained within 20 min in optimized conditions. The catalyst showed excellent catalytic stability exhibiting nearly 90% degradation ratio in the 10th cycle within 20 min, whereas pure Fe3O4-NPs showed only 62.5% in this stage. Due to the stabilization of complexing orange peel hydroxyl to iron oxide in the composite and its magnetic separation property, MOP composite exhibits excellent Fenton-like catalytic performance, which offers great prospects for low-cost and high-efficiency organic dye wastewater treatment.
Funder
Fundamental Research Funds for the Central Universities
Scientific Research Initial Foundation of Civil Aviation University of China
Subject
Water Science and Technology,Environmental Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献