Prediction of the phenol removal capacity from water by adsorption on activated carbon

Author:

Galdino Ana Luísa,Oliveira José C. A.,Magalhaes Madson L.,Lucena Sebastião M. P.

Abstract

Abstract Despite the improvement in understanding the structure of the activated carbons, the procedure for developing new carbonaceous materials suitable for the removal of phenolic compounds is still largely based on trial and error. Until now, there have been no predictive models to assist in the selection or synthesis of these adsorbents. Here, we apply molecular simulation to better understand the pore size–adsorption relationship in activated carbons. We simulated a set of phenol isotherms for different carbon pore sizes (8.9, 18.5, and 27.9 Å), named representative pores. The pore size of 8.9 Å is the most efficient in removing diluted phenol in water and was most effective at concentrations of 1.6 × 10−5 mol/L. The other pores are effective at concentrations of three orders of magnitude above this. A predictive approach for phenol removal capacity, based in the representative pore methodology, was proposed and validated for commercial activated carbon. Moreover, we present evidence that this method can be extended to other phenolic compounds.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference38 articles.

1. Correlation between PSD and adsorption of anionic dyes with different molecular weigths on activated carbon

2. ATSDR 2008 Toxicologal Profle for Phenols. ATSDR's Toxicological Profiles, p. 269. Available from: https://www.atsdr.cdc.gov/toxprofiles/tp115.pdf.

3. Phenol: A review of environmental and health risks

4. Separation of CO2 from CH4 Using Mixed-Ligand Metal−Organic Frameworks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3