Multiobjective optimisation and cluster analysis in placement of best management practices in an urban flooding scenario

Author:

Dwivedula Rohit1,Madhuri R.2,Srinivasa Raju K.2,Vasan A.2

Affiliation:

1. Department of Computer Science and Information Systems, BITS Pilani, Hyderabad Campus, Hyderabad 500 078, India

2. Department of Civil Engineering, BITS Pilani, Hyderabad Campus, Hyderabad 500 078, India

Abstract

Abstract This research is being carried out to study how best management practices (BMPs) can mitigate the negative effects of urban floods during extreme rainfall events. Strategically placing BMPs throughout open areas and rooftops in urban areas serves multiple purposes of storage of rainwater, removal of pollutants from surface runoff and sustainable utilisation of land. This situation is framed as a multiobjective optimisation problem to analyse the trade-offs between multiple goals of runoff reduction, construction cost and pollutant load reduction. Output includes a wide range of choices to choose from for decision makers. Proposed methodology is demonstrated with a case study of Greater Hyderabad Municipal Corporation (GHMC), India. A historical extreme rainfall event of 237.5 mm which occurred in 2016 and extreme rainfall event of 1,740.62 mm corresponding to representative concentration pathway (RCP) 2.6 were considered for analysis. Two multiobjective optimisation algorithms, namely non-dominated sorting genetic algorithm-III (NSGA-III) and constrained two-archive evolutionary algorithm (C-TAEA) are used to solve the BMP placement problem, following which the resulting Pareto-fronts are ensembled. K-Medoids-based cluster analysis is performed on the resulting ensembled Pareto-front. The proposed ensembled approach identified ten possible BMP configurations, with costs ranging from Rs. to surface runoff reduction ranging from to and pollutant load removal ranging from tonnes. Use of BMPs in future events has the potential to reduce surface runoff from , while simultaneously removing tonnes of pollutants for cost ranging from The proposed framework forms an effective and novel way to characterise and solve BMP optimisation problems in context of climate change, presenting a view of the urban flooding scenario today, and the likely course of events in the future.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3