Selective adsorption of phosphate by carboxyl-modified activated carbon electrodes for capacitive deionization

Author:

Miao Luwei1ORCID,Deng Wenyang2ORCID,Chen Xiaohong1ORCID,Gao Ming1ORCID,Chen Wenqing1ORCID,Ao Tianqi34ORCID

Affiliation:

1. College of Architecture and Environment, Sichuan University, Chengdu 610065, China

2. Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, No. 122, Section 1 Yellow River Middle Road, Chengdu 610065, Sichuan, China

3. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China

4. College of Water Resource and Hydropower, Sichuan University, Chengdu, 610065, China

Abstract

Abstract Capacitive deionization (CDI) has been considered as a promising technology for removing phosphate from water but suffer inferior selectivity and electrosorption performances for phosphate of current carbon electrodes in CDI. Herein, we achieved highly selective phosphate removal from a ternary effluent of Cl−, , and by using nitric acid-treated activated carbon (AC) with various modification times and pure AC as the anode and cathode, a novel phosphate selective asymmetric CDI reactor. The results showed that carboxyl groups greatly grafted on the materials after modification (varying from 0.00084 to 0.0012 mol g−1). The phosphate selectivity of the present research was higher than that of unmodified CDI, and it increased with the increase of carboxyl groups content. The highest phosphate selectivity (2.01) in modified materials is almost six times higher than that of pure AC. Moreover, the modified electrodes exhibited good regenerative ability with a phosphate desorption efficiency of around 72.12% during the adsorption/desorption process and great stability during the cycling experiment. These results demonstrated that the innovative application of nitric acid-modified AC can effectively selectively remove phosphate from mixed anion solution, opening a hopeful window to selective adsorption in water treatment by CDI.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3