Sustainable robust green synthesis of nanoparticles from waste aquatic plants and its application in environmental remediation

Author:

Balasubramanian Uma Maheswari1ORCID,Vaiyazhipalayam Murugaiyan Sivakumar1ORCID,Marimuthu Thirumarimurugan1

Affiliation:

1. Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India

Abstract

Abstract Green synthesis of nanoparticles using natural materials is an emerging technique that fascinates the scientific community globally for the treatment of wastewater. In the present study, aquatic plants such as Piaropus crassipes (PC) and Lemna gibba (LG), were utilized to make low-cost nanoparticles, and its feasibility for the removal of Zn(II) ions was studied. The synthesized nano adsorbents were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller analysis, and zeta potential analysis. The optimal conditions were evaluated by batch adsorption studies, to investigate the parameters such as pH (2–7), adsorbent dosage (0.5–5 g/L), initial concentration (20–60 mg/L), and contact time (10–120 min) etc. The isotherm, and kinetic data results fit well with Langmuir, and pseudo-second order models. The anticipated monolayer adsorption capacity with respect to the PC, and LG was found to be 42.41 mg/g and 27.65 mg/g, respectively. Thermodynamic studies showed that the process is exothermic. The adsorption mechanism of PC/LG on Zn(II) exhibited surface complexation, ion exchange, and diffusion. Desorption studies were performed to analyze the recovery potential of Zn(II) ion. Hence, this article investigates the economic synthesis of green nanoparticles, and their potential utilization in heavy metal remediation.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3