Development of LaxCa1-xMnO3 materials for Bezaktiv Blue removal in aqueous media

Author:

Nascimento É. V.1,Garrido Pedrosa A. M.2,Souza M. J. B.1

Affiliation:

1. Graduate program in Chemical Engineering, Federal University of Sergipe, Av. Marechal Rondon, Rosa Elze, São Cristóvão, SE 49100-000, Brazil

2. Department of Chemistry, Federal University of Sergipe, Av. Marechal Rondon, Rosa Elze, São Cristóvão, SE 49100-000, Brazil

Abstract

Abstract In this work, mixed oxides of LaxCa1-xMnO3 perovskite type (x = 0, 0.5 and 1.0) were synthesized through modified proteic method using collagen and calcination process at 700 °C/2 h in order to remove the commercial textile dye Bezaktiv Blue S-MAX from water. Oxides were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 physisorption, scanning electron microscopy (SEM) and point of zero charge (PZC) techniques while the dye only by the first two techniques. The XRD showed that perovskite monophase was obtained for x = 0.5 and 1.0. However, for x = 0, the low crystalline perovskite phase was obtained in the midst of precursor oxides. FTIR showed the adsorption process did not damage the adsorbents structure. The successful obtained materials have meso and macroporous with slit or cavity shape, rough surface and particles with varying sizes. The pseudo-second-order model was the one that best fit the kinetic data. The process must occur through electrostatic surface interactions between the adsorbent surface and the dye molecule. For the equilibrium study, Langmuir isotherm is the most suitable when using LaMnO3 adsorbent, while Freundlich isotherm was better suited when used the other two materials. The adsorbents were termally regenerated and reused five times. The best performance was exhibited by LaMnO3.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3