Amidation modified waste polystyrene foam as an efficient recyclable adsorbent for organic dyes removal

Author:

Pu Yanghao1,Xie Zhengfeng2,Ye Hao3,Shi Wei3

Affiliation:

1. Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China

2. Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China

3. College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China

Abstract

Abstract Modifying environmentally harmful waste polystyrene foam as an efficient recyclable adsorbent for organic dyes is important. Amidation modified polystyrene (PS-SD) was prepared by the Friedel-Crafts reaction and N,N'-dicyclohexylcarbodiimide (DCC) dehydration condensation reaction of waste polystyrene foam. PS-SD had highly efficient removal performance for organic dyes in large volume water sample solutions, and equilibrium was achieved in 0.5 h. The maximum adsorption capacities for Methylene blue (MB) and Congo red (CR) were 881.62 and 1,880.91 mg/g, respectively, at room temperature according to the Langmuir adsorption isotherm (R2 > 0.99). The kinetic data of the two dyes followed pseudo-second-order kinetics. The removal percentage remained high (>85%) after eight filtration-regeneration cycles. Experimental results showed that PS-SD was an excellent adsorbent for water treatment with high recyclability and long life.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3