Bioremediation of various aromatic and emerging pollutants by Bacillus cereus sp. isolated from petroleum sludge

Author:

Alhefeiti Manal Ali1,Athamneh Khawlah2,Vijayan Ranjit3,Ashraf Syed Salman2

Affiliation:

1. Department of Chemistry, College of Science, UAE University, Al Ain, UAE

2. Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, UAE

3. Department of Biology, College of Science, UAE University, Al Ain, UAE

Abstract

Abstract The accumulation of toxic chemical constituents in sludge and wastewater has fuelled an interest in investigating efficient and eco-friendly wastewater remediation approaches. In this study, a set of bacterial samples were isolated from petroleum sludge and tested for their ability to degrade different aromatic pollutants, including azo dyes and emerging pollutants. Although exhibiting differential specificity, all bacterial isolates were able to degrade different classes of aromatic dyes efficiently. Ribosomal 16S rRNA sequencing of the 12 bacterial isolates showed that they belonged to two different bacterial genera: Bacillus cereus and Pseudomonas guariconensis. Of these 12 strains, MA1 (B. cereus) was the most promising and was chosen for further optimization and biochemical studies. The optimum culture and remediation conditions for MA1 was found to be at pH 7, with 100 ppm dye concentration, and under aerobic condition. In addition to efficiently degrading various aromatic dyes (e.g. Congo Red, Reactive Black 5, PBS, and Toluidine Blue), MA1 was also found to be capable of degrading various emerging pollutants (e.g. prometryn, fluometuron and sulfamethoxazole). Preliminary transcriptome analysis shows that MA1 grown on media containing a mixture of aromatic dyes appears to differentially express a number of genes. Data shown here strongly suggests that petroleum sludge is a rich reservoir of bacteria with powerful remediation abilities.

Funder

United Arab Emirates University

Khalifa University of Science, Technology and Research

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3