Affiliation:
1. Instituto de Ingeniería, Universidad Nacional Autónoma de México, Coordinación de Ingeniería Ambiental, Circuito Escolar S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México
Abstract
Abstract
An important physical property in environmental samples is particle size distribution. Several processes exist to measure particle diameter, including change in electrical resistance, blocking of light, the fractionation of field flow and laser diffraction (these being the most commonly used). However, their use requires expensive and complex equipment. Therefore, a digital microscopic imaging application (DMIA) method was developed adapting the algorithms used in the helminth egg automatic detector software coupled with a neural network (NN) and Bayesian algorithms. This allowed the determination of particle size distribution in samples of waste activated sludge (WAS), recirculated sludge (RCS), and pre-treated sludge (PTS). The recirculation and electro-oxidation pre-treatment processes showed an effect in increasing the degree of solubilization, decreasing particle size and breakage factor with ranges between 44.29%, and 31.89%. Together with a final NN calibration process, it was possible to compare results. For example, the 90th percentile of equivalent diameter value obtained by the DMIA with the corresponding result for the laser diffraction method. DMIA values: 228.76 μm (WAS), 111.18 μm (RCS), and 84.45 μm (PTS). DMIA processing has advantages in terms of reducing complexity, cost and time, and offers an alternative to the laser diffraction method.
Funder
Bill and Melinda Gates Foundation
Consejo Nacional de Ciencia y Tecnología
Subject
Water Science and Technology,Environmental Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献