Utilization of activated carbon derived from waste plastic for decontamination of polycyclic aromatic hydrocarbons laden wastewater

Author:

Ilyas Muhmmad1,Ahmad Waqas2ORCID,Khan Hizbullah1

Affiliation:

1. Department of Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan

2. Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan

Abstract

Abstract Serious environmental deterioration caused by synthetic waste plastics, and the pollution of freshwater resources are the most alarming and marked challenges of the 21st century. Therefore, immense scientific efforts are being made towards the management of waste plastics and treatment of polluted water. The current study reports on the utilization of waste polyethylene terephthalate (wPET) and waste polystyrene (wPS) for fabrication of activated carbon (AC) and its application for the removal of hazardous polycyclic aromatic hydrocarbons (PAHs) pollutants from water. AC was prepared from wPET and wPS by carbonization under a N2 atmosphere followed by chemical activation with 1 M KOH and 1 M HCl. The AC was characterized by scanning electron microscopy, surface area analysis, and Fourier transform infrared spectroscopy. Adsorption of PAHs from aqueous solutions through AC was examined by batch adsorption tests. The optimum parameters for maximum adsorption of PAHs were found to be: initial PAHs concentration 40 ppm, 2 h contact time, pH 3, 5, and 7, 50 °C temperature and adsorbent dose of 0.8 g. Kinetic and isotherm models were applied to evaluate the adsorbent capacity for PAHs adsorption. The kinetic study shows that the adsorption of these PAHs onto AC follows pseudo-second-order kinetics. The experimental results demonstrated that the Langmuir isotherm model best fitted the data. The thermodynamic factors calculated such as entropy change (ΔS°), enthalpy change (ΔS°) and free energy change (ΔG°) show that the adsorption process is non-spontaneous and endothermic in nature. Results were also compared with the efficiencies of some commercial adsorbents used in practice. This examination revealed that the novel plastic-derived AC possesses a great potential for elimination and recovery of PAH elimination from industrial wastewater.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3