Best-fit probability distribution models for monthly rainfall of Northeastern Brazil

Author:

Ximenes Patricia de Souza Medeiros Pina12ORCID,Silva Antonio Samuel Alves da134ORCID,Ashkar Fahim567ORCID,Stosic Tatijana134ORCID

Affiliation:

1. Universidade Federal Rural de Pernambuco, Recife, Brasil

2. Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n - Dois Irmãos, Recife, PE 52171-900, Brazil

3. Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n - Dois Irmãos, Recife, PE 52171-900, Brasil

4. Programa de Pós-graduação em Biometria e Estatística Aplicada, Recife, Brazil

5. Université de Moncton, Moncton, Canada

6. Université de Moncton, 18 Antonine-Maillet Ave, Moncton, NB E1A 3E9, Canada

7. Université de Moncton, Département de Mathématiques et de Statistique, Moncton, Canada

Abstract

Abstract The analysis of precipitation data is extremely important for strategic planning and decision-making in various natural systems, as well as in planning and preparing for a drought period. The drought is responsible for several impacts on the economy of Northeast Brazil (NEB), mainly in the agricultural and livestock sectors. This study analyzed the fit of 2-parameter distributions gamma (GAM), log-normal (LNORM), Weibull (WEI), generalized Pareto (GP), Gumbel (GUM) and normal (NORM) to monthly precipitation data from 293 rainfall stations across NEB, in the period 1988–2017. The maximum likelihood (ML) method was used to estimate the parameters to fit the models and the selection of the model was based on a modification of the Shapiro-Wilk statistic. The results showed the chosen 2-parameter distributions to be flexible enough to describe the studied monthly precipitation data. The GAM and WEI models showed the overall best fits, but the LNORM and GP models gave the best fits in certain months of the year and regions that differed from the others in terms of their average precipitation.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference59 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3