Conditioning of raw sludge and thermally hydrolyzed sludge by ferric salt and cationic polyacrylamide: rheological analysis

Author:

Duan Liqiang1,Zhou Zhen1,Dai Xiaohu2

Affiliation:

1. College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China

2. State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China

Abstract

Abstract In this study, the conditioning effect of cationic polyacrylamide (CPAM) with different charge densities on raw sludge (RS) and thermo-hydrolyzed sludge (HS) pretreated with or without ferric salt is studied through orthogonal experiments. In addition, this paper uses the principles of rheology and morphology to analyze and clarify the conditioning mechanism of RS and HS, and reveals the mechanism of thermal hydrolysis to improve the dewatering performance of sludge. Compared with the RS, the HS has smaller particle size, better filterability, stronger fluidity and more obvious thixotropy. However, due to the influence of filter pressing time, ferric salt should be added before conditioning. The orthogonal experiment shows that the optimal conditioner is CPAM with charge density of 60, and the specific resistance to filtration and capillary suction time of the adjusted thermo-hydrolyzed sludge are reduced to (1.11 ± 0.07) × 1012 m/kg and 16.1 ± 1.8 s; the particle size increased from 61.2 to 253.5 μm. The moisture content of the sludge cake is about 48%. The structural strength and thixotropy of HS are higher than those of the RS, and can be greatly improved by adding ferric salt. Morphological analysis confirms that thermal hydrolysis can lyse microbial cells in sludge, and the sludge treated with ferric salt will have more porous structure and stronger flocculation strength.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3