Synergistic photocatalytic activity of a combination of carbon nanotubes-graphene-nickel foam nanocomposites enhanced by dielectric barrier discharge plasma technology for water purification

Author:

Xu Qihui1,Fang Shuaikang1,Chen Yin1,Park Jae Kwang2,Pan Chao3,Shen Yongjun13,Zhu Na3,Wu Huifang1

Affiliation:

1. School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China

2. Department of Civil and Environmental Engineering, University of Wisconsin–Madison, 1415 Engineering Drive, Madison, WI 53706, USA

3. Nantong University Xinglin College, Nantong 226008, China

Abstract

Abstract Degradation activity of plasma catalysis between dielectric barrier discharge (DBD) and carbon nanotubes-graphene-nickel foam (CNTs-G-Nif) has been studied in treatment of dye wastewater. CNTs-G-Nif was prepared through a two-step chemical vapor deposition (CVD) approach. The composite has been characterized by different techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectroscopy. SEM results showed that the Nif as the growth substrate was evenly wrapped by G and then CNTs were successfully grown on G as the support. The growth mechanism of composite was proposed. The possible coupled catalytic mechanism between DBD and CNTs-G-Nif were addressed. In addition, the modification on G-Nif was found by SEM during the discharge process in liquid phase. And the modification mechanism of DBD plasma (DBDP) acting on composites was discussed. Finally, by means of analyses of ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), the general degradation pathway and stepwise degradation pathways of alizarin green (AG) were proposed in detail.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3