Influence of humic substances on the landfill leachate biodegradability with a focus on temporal seasonality

Author:

Moravia Wagner Guadagnin1ORCID,Moreira Victor Rezende2ORCID,Lebron Yuri Abner Rocha2ORCID,Lange Liséte Celina2,Santos Amaral Míriam Cristina2

Affiliation:

1. Department of Environmental Science and Technology, Federal Center of Technological Education of Minas Gerais, Amazonas, Av. 5.253 – Nova Suíça, 30.421-169, Belo Horizonte, MG, Brazil

2. Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901, Belo Horizonte, MG, Brazil

Abstract

Abstract The high resilience to biological treatments from the landfill leachate is generally associated with the presence of humic substances (HS). The brown color characteristic of this effluent is also related to these substances. Landfill leachate with low biodegradability can make biological treatments unfeasible, which can drive up the cost for the treatment of large leachate volumes. In this context, this research aimed to characterize the leachate in different seasonal periods, and verify the influence of HS species on the biodegradability of the effluent to assist in the selection of adequate treatment techniques. The HS quantification was performed using the modified Lowry method and speciation through fractionation according to the molar masses of the HS species. The tropical regions can be the precursor for the rapid stabilization of biodegradable organic matter. The warmer climate contributed to a reduced BOD/COD ratio (0.03) and the predominance of compounds of lower mass (e.g.: fulvic acids). The tests showed an HS concentration of 26.9% of the total COD in the raw leachate in the rainy season, which increased to 37.3% in the dry season. Approximately 70% of HS species refer to fulvic acids, a fraction identified as having the highest biologic treatment resilience.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3