Light limitation inducing overcompensatory growth of cyanobacteria and function of serine/threonine kinase (STK) genes involved

Author:

Dai Wei1,Chen Gao2,Bi Xiangdong1,Zhong Huairong2,Wang Xueying1,Dong Shaojie1,Lv Dong1,Zhang Shulin1,Zhang Dajuan1,Wang Na1

Affiliation:

1. Key Laboratory of Aquatic-Ecology and Aquaculture of Tianjin, College of Fishery, Tianjin Agricultural University, Tianjin, China

2. Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, China and Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Ji'nan, China

Abstract

Abstract The rapid overcompensatory growth that appears when cyanobacteria are supplied with adequate resources after a period of resource deprivation might contribute to the occurrence of cyanobacterial blooms. We investigated the changing characteristics of overcompensatory growth and serine/threonine kinase (STK) genes expression of cyanobacterium Microcystis aeruginosa in response to light limitation. The results showed M. aeruginosa exhibited overcompensatory growth for 2 days after light recovery, during which the increase in growth was inversely related to light intensity. Expression of STK genes, such as spkD, was upregulated significantly at 0.5–4 h after light recovery (P < 0.05). To investigate the function of STK genes in the overcompensatory growth, M. aeruginosa spkD was heterologously expressed in Synechocystis. Transgenic Synechocystis exhibited greater and longer overcompensatory growth than wild-type Synechocystis after light recovery. Relative expression levels of STK genes in transgenic Synechocystis were significantly higher than those in wild-type Synechocystis at 24 h of light recovery (P < 0.05). Heterologous expression of Microcystis spkD might stimulate overcompensatory growth of Synechocystis by affecting its STK gene expression.

Funder

the National Natural Science Foundation of China

National Key Research and Development Program of Shandong

Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences

Natural Science Foundation Grant of Tianjin

Tianjin Science and Technology Project

the Fundamental Research Funds of Tianjin Universities

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3