Treatment of wastewater from a dairy plant by adsorption using synthesized copper oxide nanoparticles: kinetics and isotherms modeling optimization

Author:

Al-Ananzeh Nada M.1

Affiliation:

1. Department of Chemical Engineering, Al-Huson University College, Al-Balqa Applied University, Salt, Jordan

Abstract

Abstract Dairy plants produce 1 to 4 L of wastewater per 1 L of processed milk. The wastewater contains high values of chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentrations, in addition to high levels of dissolved solids. In this study, synthesized copper oxide nanoparticles (CuONPs) coupled with Sophora Japonica fruit, were used as an adsorbent, for the first time, to treat the effluent of dairy plants in a batch adsorption process. The analysis techniques, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were utilized to characterize the adsorbent. The COD removal, using (CuONPs)-based adsorbent, was investigated by varying contact time, masses of the adsorbent, initial COD value and temperatures. The optimum conditions for highest removal percentage were contact time of 120 min, a temperature of 25 °C, pH value of 7.5, and 1 g of adsorbent. The initial COD values used were in the range of 100–700 ppm. The COD percent removal was in the range of 77 to 95%. Freundlich isotherm exhibited the best fitting for the results (R2 = 0.998) with a favorable spontaneous exothermic adsorption process. Based on the calculated normalized deviation value, the modified diffusion model, intra-diffusion, and pseudo-second-order kinetics all showed very good fitting for the adsorption data as indicated by the kinetics study.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3