Affiliation:
1. Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
2. Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Abstract
Abstract
In the present research, the removal of Basic Orange 2 (BO2) dye using alkaline-modified clay nanoparticles was studied. To characterize the adsorbent, XRD, FTIR, FESEM, EDX, BET and BJH analyses were performed. The effect of the variables influencing the dye adsorption process such as adsorbent dose, contact time, pH, stirring rate, temperature, and initial dye concentration was investigated. Furthermore, the high efficiency of Ni2+ removal indicated that it is possible to remove both dye and metal cation under the same optimum conditions. The experimental data were analyzed by Langmuir and Freundlich isotherm models. Fitting the experimental data to Langmuir isotherm indicated that the monolayer adsorption of dye occurred at homogeneous sites. Experimental data were also analyzed with pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetic equations for kinetic modeling of the dye removal process. The adsorption results indicated that the process follows a pseudo-second-order kinetic model. The thermodynamic parameters of the dye adsorption process such as enthalpy, entropy, and Gibbs free energy changes were calculated and revealed that the adsorption process was spontaneous and endothermic in nature. The results presented the high potential of the modified nanoclay as a cost-effective adsorbent for the removal of BO2 dye and Ni2+ from aqueous medium.
Subject
Water Science and Technology,Environmental Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献