An ultrasound/O3 and UV/O3 process for atrazine manufacturing wastewater treatment: a multiple scale experimental study

Author:

Wen Diya12ORCID,Chen Bing3,Liu Bo3

Affiliation:

1. School of Environment, Tsinghua University, Beijing 100084, China

2. Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China

3. Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada

Abstract

Abstract An ultraviolet (UV) and ultrasound (US) enhanced ozonation method were developed to investigate their efficiency on the removal of atrazine and chemical oxygen demand (COD) in authentic atrazine manufacturing wastewater. The bench-scale tests suggested a positive effect of UV and US on the degradation of atrazine within a limited energy range. The pilot-scale flow-through system was further tested by using response surface methodology. The results showed that O3 and its interaction with UV promoted the degradation of both COD and atrazine while its interaction with US inhibited the removal of COD but promoted the removal of atrazine. The optimal removal rate of atrazine (96.9%) was achieved in the condition of 6.86 W/L UV, 1.96 g/L·h O3 and 294 W/L US. Chloride ions hindered the atrazine degradation, but the generated free chlorine radicals were still able to react with atrazine. In terms of energy-effectiveness, the configuration of 14.7 W/L UV and 1.96 g/L·h O3 is the best option, which have the electrical energy per order of 181.6 kWh/m3 for atrazine and 0.13 kWh/g COD. These method and findings could be helpful in the development of energy-efficient advanced oxidation processes in treating wastewater with high salinity and COD loadings.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3