Efficient removal of crystal violet dye from aqueous solutions using sodium hydroxide-modified avocado shells: kinetics and isotherms modeling

Author:

Ait Haki Mohamed1,Imgharn Abdelaziz1,Aarab Nouh1,Hsini Abdelghani1,Essekri Abdelillah1,Laabd MohamedORCID,El Jazouli Habiba1,Elamine Maria1,Lakhmiri Rajae2,Albourine Abdallah1

Affiliation:

1. Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir BP 8106, Morocco

2. Laboratory of Chemical Engineering and Resource Development, Faculty of Sciences and Techniques, Abdelmalek Essaâdi University, Tangier, Morocco

Abstract

Abstract The main objective of this study is to optimize a new composite for the depollution of contaminated water. The sodium hydroxide-modified avocado shells (NaOH-AS) were firstly prepared, characterized by field-emission-scanning-electron-microscopy (FE-SEM), X-ray energy dispersive spectroscopy (EDS) and Fourier transforms infrared (FT-IR) spectroscopy, and applied for efficient removal of crystal violet dye (CV) in wastewater. In addition, the adsorption in a batch system of CV dye on the NaOH-AS material was studied. Therefore, we accomplished a parametric study of the adsorption by studying the effect of several important parameters on the decolorizing power of the used material, namely, initial pH, contact time, initial CV dye concentration, temperature, and the ionic strength effect on the CV dye adsorption process were systematically assessed. The highest adsorption efficiency of CV dye (>96.9%) by NaOH-AS was obtained at pH >8. The pseudo-second-order kinetic model gave the best description of the adsorption kinetic of CV dye on the AS and NaOH-AS adsorbents. In addition, the mass transfer of CV dye molecules from the solution to the adsorbent surface occurred in three sequential stages (boundary layer diffusion, intraparticle diffusion and adsorption equilibrium). The adsorption isotherm data were best fitted with the Freundlich model. The adsorption capacity of AS increased from 135.88 to 179.80 mg g−1 after treatment by 1 M NaOH. The thermodynamic study showed that CV dye adsorption onto NaOH-AS was an exothermic and feasible process. The electrostatic interactions acted as the only forces governing the CV adsorption mechanism. The NaOH-AS demonstrated a satisfactory reusability. Therefore, we can state that the as-developed NaOH-AS material has a potential application prospect as an efficient adsorbent for CV dye from wastewaters.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3