Effect of internal and external resistances on desalination in microbial desalination cell

Author:

Rahman Sadik1,Al-Mamun Abdullah1,Jafary Tahereh2,Alhimali Halima1,Baawain Mahad Said3

Affiliation:

1. Department of Civil and Architectural Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Muscat, Sultanate of Oman

2. Process Engineering Department, International Maritime College, Sohar, Sultanate of Oman

3. Ministry of Labour, Muscat, Sultanate of Oman

Abstract

Abstract The green and cost-effective nature of the microbial desalination cell (MDC) make it a promising alternative for future sustainable desalination. However, MDC suffers from a low desalination rate that inhibits it being commercialized. External resistance (Rext) is one of the factors that significantly affect the desalination rate in MDCs, which is still under debate. This research, for the first time, investigated the impact of Rext on MDCs with different internal resistance (Rint) of the system to discover the optimal range of Rext for efficient MDC performance. The results showed that the effect of Rext on desalination rate (2.52 mg/h) was quite low when the Rint of MDC was high (200 Ω). However, operating the MDC with a low Rint (67 Ω) significantly improved the desalination rate (9.85 mg/h) and current generation. When MDC was operated with a low Rint the effect of variable Rext on desalination and current generation was noticeable. Therefore, low Rint (67 Ω) MDC was used to select the optimum Rext when the optimal range was found to be Rext ≪ Rint, Rext < Rint, Rext ≈ Rint (ranging from 1–69 Ω) to achieve the highest desalination rates (10.41–8.59 mg/h). The results showed the superior effect of Rint on desalination rate before selecting the optimal range of Rext in the outer circuit.

Funder

His Majesty's Trust Fund

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3