Microalgae cultivation in wastewater effluent from tilapia culture pond for enhanced bioethanol production

Author:

Bhuyar Prakash12,Trejo Marlen12,Dussadee Natthawud1,Unpaprom Yuwalee23,Ramaraj Rameshprabu12,Whangchai Kanda4

Affiliation:

1. School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand

2. Sustainable Resources and Sustainable Engineering Research Lab, Maejo University, Chiang Mai 50290, Thailand

3. Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand

4. Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

Abstract The large number of wastewaters are generated because of the various production processes. Vegetable and fish processing can be considered an important industry for wastewater generation. The essential method for completing this waste is to digest the organic matter using anaerobic digestion followed by aerobic wastewater treatment processes; however, wastewater from tilapia culture pond retains considerable quantities of inorganic substances, particularly nutrients like nitrogen and phosphorus. The optimal conditions for cultivating Chlorella vulgaris from wastewater treatment effluent from tilapia culture pond were investigated in this study. The appropriate conditions were found to be 10% initial stock suspension, 20 cm depth, and 12 days of culture conditions. C. vulgaris had an optical density of 0.649, a cell density of 17.68 × 105 cells/mL, and biomass of 0.376 ± 94.21 mg/L after cultivation. Discharged wastewater from the fishpond was utilized for the improved growth of microalgae and obtained biomass was used for bioethanol production. This study verified that fishpond wastewater is the best source of nutrients for algal mass production and biofuel applications.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3