Dynamic and equilibrium precipitation of struvite from the concentrated cellulosic ethanol stillage

Author:

Zhang Qiqi1,Hogen Tobias1,Zhou Kuangxin2,Berendts Stefan3,Hu Kang4,Zhang Yongjun5ORCID,Geißen Sven-Uwe1ORCID

Affiliation:

1. Environmental Process Engineering, Technical University of Berlin, Berlin 10623, Germany

2. Berlin Centre of Competence for Water, Berlin 10709, Germany

3. Solid State Chemistry, Technical University of Berlin, Berlin 10623, Germany

4. Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China

5. School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211800, China

Abstract

Abstract The phosphate rock mineral is the main source of P-fertilizer production. It is estimated to become depleted in next century. Thus, the recovery of phosphorus from waste streams has attracted great interest. The cellulosic ethanol production is seen as more and more important in future. During the production of cellulosic ethanol, the phosphorus element is released from lignocellulosic biomasses and ends up dissolved as phosphate ions in the stillage stream. In this study, the struvite (MgNH4PO4 · 6 H2O) recovery from the concentrated cellulosic ethanol stillage (ES) was conducted under room conditions with an initial pH at 7–9. The effect of Mg2+, PO43−, NH4+ and Ca2+ during struvite precipitation tests was investigated. The optimized pH value for struvite recovery is estimated at 8.5, by which 85% of PO43− and 46% of Mg2+ are removed from the liquid stream. The mass fraction of struvite in recovered crystal sample reaches 82 wt.%. The economic evaluation of struvite recovery from ES was also investigated. This work proves that the struvite is potentially to be recovered with high purity from the concentrated cellulosic ethanol stillage.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Closing the Nutrient Loop—The New Approaches to Recovering Biomass Minerals during the Biorefinery Processes;International Journal of Environmental Research and Public Health;2023-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3