Solar photocatalytic degradation of metformin by TiO2 synthesized using Calotropis gigantea leaf extract

Author:

Prashanth Venkatesan1,Priyanka Kumari1,Remya Neelancherry1

Affiliation:

1. School of Infrastructure, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India

Abstract

Abstract A novel TiO2 nanoparticle was prepared through green synthesis using Calotropis gigantea (CG) leaf extract. Morphological analysis showed dispersed spherical CG-TiO2 nanoparticles with an average size of 42 nm. The prepared catalyst was used for the degradation of metformin (a widely used diabetic medicine) by solar photocatalysis. A three-factor central composite design (CCD) was used to explore the effect of independent variables, i.e., pH 3–7, metformin concentration 1–10 mg/L, and catalyst (CG-TiO2) dosage 0.5–2.0 g/L. A maximum metformin degradation of 96.7% was observed under optimum conditions i.e., pH = 9.7, initial metformin concentration = 9.7 mg/L and catalyst dosage = 0.7 g/L, with ∼86% mineralization efficiency. A quadratic model with an error <5% was developed to predict the metformin degradation and the rate of degradation under the optimum conditions followed pseudo-first-order kinetics (k = 0.014/min). CG-TiO2 exhibited higher metformin degradation efficiency (96.7%) compared to P-25 (23.9%) at optimum conditions. The recyclability study indicated effective reuse of the catalyst for up to three cycles. The proposed metformin degradation route is hydroxyl radical (•OH) generation on the CG-TiO2 surface, transfer of •OH to the aqueous phase from CG-TiO2 and subsequent oxidation of metformin in the aqueous phase.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3