In vivo endocrine disruption assessment of wastewater treatment plant effluents with small organisms

Author:

Castillo Luis1,Seriki Kemi1,Mateos Stéphanie2,Loire Nicolas2,Guédon Nathalie2,Lemkine Gregory F.2,Demeneix Barbara A.3,Tindall Andrew J.2

Affiliation:

1. Veolia Environnement Recherche & Innovation - Chemin de la Digue, BP 76 – 78603 Maisons-Laffitte Cedex, France

2. WatchFrog S.A., 4 rue Pierre Fontaine, 91000 Evry, France

3. UMR CNRS 5166, Evolution des Régulations Endocriniennes, Department of Regulation, Development and Molecular Diversity, Muséum National d'Histoire Naturelle, 7 Rue Cuvier, 75231 Paris 05, France

Abstract

Surface water receives a variety of micro-pollutants that could alter aquatic organisms' reproduction and development. It is known that a few nanograms per litre of these compounds can induce endocrine-disrupting effects in aquatic species. Many compounds are released daily in wastewater, and identifying the compounds responsible for inducing such disruption is difficult. Methods using biological analysis are therefore an alternative to chemical analysis, as the endocrine disruption potential of the stream as a whole is considered. To detect hormonal disruption of thyroid and oestrogenic functions, fluorescent Xenopus laevis tadpoles and medaka (Oryzias latipes) fish larvae bearing genetic constructs integrating hormonal responsive elements were used for physiological screens for potential endocrine disruption in streams from an urban wastewater treatment plant. The Xenopus model was used to assess thyroid disruption and the medaka model oestrogenic disruption in wastewater samples. Assays using the genetically modified organisms were conducted on 9 influent and 32 effluent samples. The thyroidal effect of wastewater was either reduced or removed by the treatment plant; no oestrogenic effect was detected in any of the wastewater samples.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3