Sonochemical degradation of chlorobenzene in the presence of additives

Author:

Gole Vitthal L.1,Gogate Parag R.12

Affiliation:

1. Chemical Engineering Department, AISSMS College of Engineering, Kennedy Road, Pune-411001, India

2. Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai-400019, India

Abstract

The present work deals with establishing the pathway for the selection of additives for intensification of the sonolytic degradation of chlorobenzene. The degradation of chlorobenzene has been investigated in the presence of different additives such as CuO, TiO2, nano-TiO2 and NaCl. The reaction has been monitored in terms of the concentration of the parent pollutant as well as the extent of mineralization. The first-order kinetic rate constant for the removal of chlorobenzene has been evaluated for different loadings of additives. It has been observed that the extent of degradation and mineralization was maximum in the presence of nano-TiO2 and minimum in the presence of CuO. A three-step mechanism has been developed for the degradation of chlorobenzene based on the identification of intermediates. The removal of chloride from the benzene ring due to pyrolysis was the dominant mechanism with minimal contribution from the attack of hydroxyl radical present in the bulk of solution. The oxidation products also react subsequently with the hydroxyl radicals resulting in mineralization. The rate of mineralization has been quantified in terms of total organic carbon removal. The observed trends for the mineralization confirm that the extent of mineralization depends on the ease of generation of hydroxyl radicals.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3