Phosphorus release mechanisms during digestion of EBPR sludge under anaerobic, anoxic and aerobic conditions

Author:

Bi Dongsu1,Guo Xiaopin2,Chen Donghui1

Affiliation:

1. Environmental Research Institute of Shanghai Institute of Technology, Shanghai 200235, China

2. Shanghai Academy of Environmental Sciences, Shanghai 200233, China

Abstract

Three laboratory-scale digesters were operated in parallel under anaerobic, anoxic and aerobic conditions to reveal the release mechanisms of phosphorus when digesting enhanced biological phosphorus removal (EBPR) sludge. The variation rates of the parameters associated with phosphorus release were calculated and compared with that of a typical EBPR anaerobic process. The results show that both phosphorus-accumulating organisms (PAOs) and denitrifying phosphorus-accumulating organisms (DPAOs) played important roles in the phosphorus release during the digestion processes. Under anaerobic conditions, the PAOs hydrolyzed internal polyphosphorus (poly-P) into PO43−-P concurrent with synthesis of polyhydroxyalkanoates (PHA). Under anoxic or aerobic conditions, PAOs and/or DPAOs assimilated part of the PO43−-P from the digestive liquid using nitrate or oxygen as terminal electron acceptors. Nevertheless, the biological activities of PAOs under anaerobic conditions and DPAOs under anoxic conditions were limited. Moreover, it was the biomass hydrolysis degree that determined the phosphorus release capacity of the sludge, regardless of whether anaerobic, anoxic or aerobic conditions were adopted. Assuming that nitrate was the sole electron acceptor during anoxic digestion of EBPR biomass, the relationship between the consumption of nitrate and uptake of PO43−-P associated with the denitrifying phosphorus removal (DPR) can be expressed as ΔP = 0.11 × ΔN.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3