Evaluation of overland flow model for a hillslope using laboratory flume data

Author:

Arguelles A. C. C.1,Jung M.1,Pak G.1,Aksoy H.2,Kavvas M. L.3,Yoon J.1

Affiliation:

1. Department of Environmental Engineering (jointly appointed at the Program in Environmental Technology and Policy), Korea University, Sejong 339-700, Korea

2. Department of Civil Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey

3. Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA

Abstract

Comprehensive modelling of overland flow requires models for both rill and interrill area overland flow. Evaluation of a physically based mathematical model for simulating overland flow generated on rill and interrill areas of hillslope was done using a data set gathered from a laboratory experimental setup. A rainfall simulator has been constructed together with a 6.50 m × 1.36 m erosion flume that can be given adjustable slopes in both longitudinal and lateral directions. The model was calibrated and validated using the experimental results from the setup of the flume having 5% lateral and 10% longitudinal slopes where rainfall intensities of 105 and 45 mm/hr were induced with the use of nozzles. Results show that for the given slope combination, the model was capable of simulating the flow coming from the rill and interrill areas for the two different rainfall intensities. It was found that significantly more of the flow occurred in the form of the rill flow. The model studied here can be used for the better prediction of overland flow and can also be used as a building block for an associated erosion and sediment transport model.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3