Microorganism inactivation by an ozonation step optimized for micropollutant removal from tertiary effluent

Author:

Schaar H.1,Sommer R.2,Schürhagl R.2,Yillia P.1,Kreuzinger N.1

Affiliation:

1. Institute of Water Quality, Resources and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna, Austria

2. Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, 1095 Vienna, Austria

Abstract

This paper demonstrates the additional benefit of the microbicidal efficacy of an ozonation plant implemented for micropollutant removal from tertiary effluent. Due to the low amount of viruses and protozoa in the tertiary effluent, bacteriophage MS2 and spores of Bacillus subtilis were dosed as surrogates. At specific ozone consumptions of 0.6 and 0.9 g O3/g dissolved organic carbon (DOC) a 2-log colony forming unit (CFU) reduction was achieved for indigenous Escherichia coli and enterococci, and the limits of the European bathing water directive for the excellent quality of inland waters were met. Higher removal was impeded by the shielding effect of suspended solids in the effluent, which implies the combination of ozonation with a preceding filtration step if higher microbicidal performances are required. The surrogate virus MS2 was reduced by 4–5 log while no significant inactivation was detected for B. subtilis spores. Additionally, the impact of ozonation on the biochemical oxygen demand (BOD) was studied. The BOD5 measurement was not adversely affected despite the reduced concentration of microorganisms after ozonation. The intrinsic increase in BOD5 averaged 15% at 0.6–0.7 g O3/g DOC. The impact of the projected increase on the surface water quality is generally not considered a problem but has to be assessed on a case-by-case approach.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3