Metagenomes obtained by ‘deep sequencing’ – what do they tell about the enhanced biological phosphorus removal communities?

Author:

Albertsen Mads1,Saunders Aaron M.1,Nielsen Kåre L.1,Nielsen Per H.1

Affiliation:

1. Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark

Abstract

Metagenomics enables studies of the genomic potential of complex microbial communities by sequencing bulk genomic DNA directly from the environment. Knowledge of the genetic potential of a community can be used to formulate and test ecological hypotheses about stability and performance. In this study deep metagenomics and fluorescence in situ hybridization (FISH) were used to study a full-scale wastewater treatment plant with enhanced biological phosphorus removal (EBPR), and the results were compared to an existing EBPR metagenome. EBPR is a widely used process that relies on a complex community of microorganisms to function properly. Insight into community and species level stability and dynamics is valuable for knowledge-driven optimization of the EBPR process. The metagenomes of the EBPR communities were distinct compared to metagenomes of communities from a wide range of other environments, which could be attributed to selection pressures of the EBPR process. The metabolic potential of one of the key microorganisms in the EPBR process, Accumulibacter, was investigated in more detail in the two plants, revealing a potential importance of phage predation on the dynamics of Accumulibacter populations. The results demonstrate that metagenomics can be used as a powerful tool for system wide characterization of the EBPR community as well as for a deeper understanding of the function of specific community members. Furthermore, we discuss and illustrate some of the general pitfalls in metagenomics and stress the need of additional DNA extraction independent information in metagenome studies.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3