Reliability of on-site greywater treatment systems in Mediterranean and arid environments – a case study

Author:

Alfiya Y.1,Gross A.2,Sklarz M.2,Friedler E.1

Affiliation:

1. Faculty of Civil & Environmental Engineering, Technion - Israel Institute of Technology, Technion, 3200 Haifa, Israel

2. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev Sede Boqer Campus 84990 Midreshet Ben-Gurion, Israel

Abstract

On-site greywater (GW) treatment and reuse is gaining popularity. However, a main point of concern is that inadequate treatment of such water may lead to negative environmental and health effects. Maintenance of single-family home GW systems is usually performed by home owners with limited professional support. Therefore, unless GW systems are reliable, environmental and public health might be compromised. This study is aimed at investigating the reliability of on-site recirculated vertical flow constructed wetlands (RVFCW) in 20 single-family homes. In order to ensure reliability, the failure-tree approach was adopted during the design and construction of the systems. The performance of the systems was monitored for 1.5 years, by evaluating treated GW flow and quality, and by recording all malfunctions and maintenance work. Only 39 failures occurred during this period, of which four caused irrigation with impaired quality GW, while the rest led to no irrigation. The mean time between failures (MTBF) was 305 days; two out of the 20 systems suffered from seven malfunctions (each), while nine systems did not fail at all. Thus, it can be postulated that if on-site GW treatment systems are designed with the right controls, and if scheduled (basic and relatively infrequent) maintenance is performed, GW reuse can be safe to the environment and human health.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3