Sewage pre-concentration for maximum recovery and reuse at decentralized level

Author:

Diamantis V.1,Verstraete W.2,Eftaxias A.1,Bundervoet B.2,Siegfried V.2,Melidis P.1,Aivasidis A.1

Affiliation:

1. Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Greece

2. Laboratory of Microbial Ecology and Technology, University of Gent, Gent, Belgium

Abstract

Pre-concentration of municipal wastewater by chemically enhanced primary treatment (CEPT) was studied under controlled laboratory conditions. Both iron and aluminium-based coagulants were examined at gradually increasing concentrations (0.23, 0.35, 0.70 and 1.05 mmol/L). The CEPT sludge generated from different coagulation experiments was digested in batch anaerobic reactors, while the supernatant was tested in a dead-end microfiltration setup. The results of the study show that biogas yield was dramatically decreased (from 0.40 to 0.10 m3/kg chemical oxygen demand of influent) with increasing coagulant dose. In contrast, supernatant filterability was improved. Based on the laboratory results, a conceptual design was produced for a community of 2000 inhabitant equivalents (IE), using CEPT technology (at low coagulant dose) with anaerobic digestion of the concentrates. According to this, the capital and operational costs were 0.11 and 0.09 €/m3, respectively. The biogas generated is used for digester heating and the overall process is energy self-sufficient. At a small-scale and in private applications, CEPT technology is preferably operated at higher coagulant dose, followed by membrane filtration for water reuse. Accordingly, sewage purification and reuse is possible without implementing aerobic biological processes.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3