Adsorption of polycyclic aromatic hydrocarbons from wastewater by using silica-based organic–inorganic nanohybrid material

Author:

Balati Ali1,Shahbazi Afsaneh1,Amini Mostafa M.2,Hashemi Seyed Hossein1

Affiliation:

1. Environmental Sciences Research Institute, Shahid Beheshti University, G.C., Tehran 1983963113, Iran

2. Department of Chemistry, Shahid Beheshti University, G.C., Tehran 1983963113, Iran

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are a group of priority pollutants, which are classified as persistent hazardous contaminants. Herein, the adsorption of three PAHs, naphthalene (NAP), acenaphthylene (ACN), and phenanthrene (PHN), from wastewater onto NH2-SBA-15 organic–inorganic nanohybrid material as a function of pH of the media (2–10), sorbent dosage (0.5–3.5 g L−1), PAH concentration (1–18 mg g−1), and temperature (25–45 °C) were elucidated. The prepared adsorbents were characterized by scanning electron microscope, transmission electron microscopy, X-ray diffractions, and thermogravimetric analysis. Among Langmuir, Freundlich, and Temkin isotherms models, it was found that the Langmuir model gave an excellent overall fit (R2 > 0.97). The maximum adsorption capacity of 1.92, 1.41, and 0.76 mg g−1 was obtained for NAP, ACN, and PHN, respectively. Adsorption kinetics of PAHs onto NH2-SBA-15 was in accordance with the pseudo-second-order model, providing evidence that pore mass transferring was involved. PAHs' adsorption was strongly dependent on temperature, and confirmed the spontaneous and endothermic nature of the process. The optimized sorption condition was successfully applied to the real petroleum refinery wastewater samples and the adsorption capacity of NH2-SBA-15 was satisfactory for PAHs' studies as 1.67, 1.06, and 0.24 mg g−1 for NAP, ACN and PHN, respectively. Furthermore, reusability was successfully tested by five sequential recoveries.

Publisher

IWA Publishing

Subject

Filtration and Separation,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3