The occurrence of potentially pathogenic filamentous fungi in recreational surface water as a public health risk

Author:

Góralska Katarzyna1,Błaszkowska Joanna1,Dzikowiec Magdalena2

Affiliation:

1. Department of Biology and Parasitology Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland

2. Department of Biomedicine and Genetics Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland

Abstract

Abstract Microfungi occurring in surface water may represent an important health risk. Recreational water reservoirs are a potential reservoir of pathogenic fungi. The aim of the study was to assess the diversity of mycobiota in selected artificial bathing reservoirs with regard to its biosafety for the human population. The studies were conducted during the summer of 2016 in three research seasons (June (I), July and August (II), and September (III)), taking into account the various periods of recreational activities. Filamentous fungi were isolated from water samples collected at five different ponds utilized for recreation. From 162 water samples, 149 fungal taxa of filamentous fungi were identified: 140 were classified to species level and only nine to genus level. Aspergillus fumigatus was the dominant species. The highest species richness (S) was noted in June, with 93 fungal taxa (Menhinick's index from 2.65 to 4.49). Additionally, in season I, the highest diversity of fungal species was revealed (Simpson's diversity index from 0.83 to 0.99). The average number of CFU/1 mL sample ranged between 0.4 and 4.6 depending on the time of sampling and ponds. Of all the isolated species, 128 were clinically relevant (11 from RG-2 and 117 from RG-1), highlighting the need to introduce seasonal mycological monitoring of such reservoirs. This article has been made Open Access thanks to the generous support of a global network of libraries as part of the Knowledge Unlatched Select initiative.

Publisher

IWA Publishing

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology

Reference63 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3