Blue Green Systems for urban heat mitigation: mechanisms, effectiveness and research directions

Author:

Probst Noëmie12ORCID,Bach Peter M.12ORCID,Cook Lauren M.2ORCID,Maurer Max12ORCID,Leitão João P.2ORCID

Affiliation:

1. a Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland

2. b Swiss Federal Institute of Aquatic Science & Technology (Eawag), Überlandstrasse 133, 8600 Dübendorf, Switzerland

Abstract

Abstract Reflected in the growing body of literature, urban heat mitigation is increasingly relevant as cities experience extreme heat, exacerbated by climate change and rapid urbanisation. Most studies focus on urban–rural temperature differences, known as the Urban Heat Island, which does not provide insight into urban heat dynamics. Here, we synthesise current knowledge on spatio-temporal variations of heat sources and sinks, showing that a targeted and absolute understanding of urban heat dynamics rather than an urban–rural comparison should be encouraged. We discuss mechanisms of heat sinks for microclimate control, provide a clear classification of Blue Green Systems and evaluate current knowledge of their effectiveness in urban heat mitigation. We consider planning and optimisation aspects of Blue Green Infrastructure (greenery and water bodies/features), interactions with hard surfaces and practices that ensure space and water availability. Blue Green Systems can positively affect urban microclimates, especially when strategically planned to achieve synergies. Effectiveness is governed by their dominant cooling mechanisms that show diurnal and seasonal variability and depend upon background climatic conditions and characteristics of surrounding urban areas. Situationally appropriate combination of various types of Blue Green Systems and their connectivity increases heat mitigation potential while providing multiple ecosystem services but requires further research.

Publisher

IWA Publishing

Subject

Water Science and Technology,Management, Monitoring, Policy and Law,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3