Understanding the effects of site-scale water-sensitive urban design (WSUD) in the urban water cycle: a review

Author:

Meng Xuli12ORCID

Affiliation:

1. a Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia

2. b Moreton Bay Regional Council, Strathpine, QLD 4500, Australia

Abstract

Abstract With city growth, the development of vacant or under-used land parcels is becoming more common compared to the past. The current ‘water-sensitive urban design (WSUD)’ approach to such development will improve resource efficiency, liveability, and the amenity of cities, especially natural water systems. However, there is a need to quantify the water performance of site-scale WSUD options, especially about how these options impact the ‘natural’ and ‘anthropogenic’ flows in the urban water cycle. This study reviewed research about site-scale applications, summarizing the urban water cycle studies from before development to after development. Key findings (i) include very big margin was quantified by (a) water retention (30–100%) and (b) portable water demand reduction (18–100%) for selected site-scale WSUD options through six research studies; (ii) still unclear about the selected site-scale WSUD options’ interaction performance in the urban water cycle between each water accounts, and (iii) need to clarify the site-scale WSUD option's contribution under specific rainfall scenarios. In summary, this study aims to review the literature on the urban water cycle; review the effects of site-scale WSUD options in the urban water cycle; review the water mass balance and relevant evaluation application, and highlight the opportunities for the future urban water cycle studies.

Publisher

IWA Publishing

Subject

Water Science and Technology,Management, Monitoring, Policy and Law,Environmental Science (miscellaneous)

Reference63 articles.

1. Assessing climate change impacts on the reliability of rainwater harvesting systems;Resources, Conservation and Recycling,2018

2. Assessing the combined effects of urbanisation and climate change on the river water quality in an integrated urban wastewater system in the UK;Journal of Environmental Management,2012

3. A critical review of integrated urban water modelling - Urban drainage and beyond;Environmental Modelling and Software,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3