Zero additional maintenance stormwater biofilters: from laboratory testing to field implementation

Author:

Prodanovic Veljko1ORCID,Hatt Belinda2,Fowdar Harsha3,Al-Ameri Mohammed4,Deletic Ana15

Affiliation:

1. a Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Kensington, NSW 2052, Australia

2. b Melbourne Water Corporation, 990 La Trobe Street, Docklands, VIC 3008, Australia

3. c Environmental and Public Health Microbiology Laboratory (EPHMLab), Department of Civil Engineering, Monash University, Wellington Road, Clayton, VIC 3800, Australia

4. d Civil Engineering Department, University of Technology Iraq, Baghdad, Iraq

5. e School of Civil and Environmental Engineering, Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia

Abstract

Abstract Stormwater biofilters are one of the most widely used nature-based solutions for urban water management. In the last 20 years, biofilters have been extensively studied for their pollutant removal performance; however, their application in the field is limited by high maintenance requirements. In this work, we propose the concept of zero additional maintenance (ZAM) biofilters as a solution to this challenge. To understand the design and operation of ZAM biofilters, a three-stage research programme was conducted to (i) examine filter media configurations that could protect against surface clogging, (ii) test the pollutant removal performance of a variety of lawn grasses, and (iii) validate the laboratory findings through field monitoring. The results showed that a protective filter media layer delayed the onset of clogging. Five lawn grasses – Kenda Kikuyu, Empire Zoysia, Santa Ana Couch, Village Green Kikuyu and Palmetto Soft Leaf Buffalo – were found to effectively reduce nitrogen concentrations and meet other local pollution reduction requirements. Monitoring of three field-scale ZAM biofilters confirmed their high nutrient and heavy metal removal performance. Overall, the findings of these three studies confirm the potential for well-designed ZAM biofilters to achieve stormwater management requirements with no additional maintenance compared with standard street landscaping.

Funder

Manningham City Council

Melbourne Water

Cooperative Research Centre for Water Sensitive Cities

Publisher

IWA Publishing

Subject

Water Science and Technology,Management, Monitoring, Policy and Law,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3