Sorption of metaldehyde using granular activated carbon

Author:

Salvestrini S.12,Vanore P.1,Bogush A.3,Mayadevi S.4,Campos L. C.3

Affiliation:

1. Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania, Via Vivaldi 43, Caserta 81100, Italy

2. Environmental Technologies, Spin Off of Università degli Studi della Campania, Via Vivaldi 43, Caserta 81100, Italy

3. Centre for Resource Efficiency & the Environment, Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK

4. CEPD Division, CSIR-National Chemical Laboratory, Pune, India

Abstract

In this work, the ability of granular activated carbon (GAC) to sorb metaldehyde was evaluated. The kinetic data could be described by an intra-particle diffusion model, which indicated that the porosity of the sorbent strongly influenced the rate of sorption. The analysis of the equilibrium sorption data revealed that ionic strength and temperature did not play any significant role in the metaldehyde uptake. The sorption isotherms were successfully predicted by the Freundlich model. The GAC used in this paper exhibited a higher affinity and sorption capacity for metaldehyde with respect to other GACs studied in previous works, probably as a result of its higher specific surface area and high point of zero charge.

Publisher

IWA Publishing

Subject

Filtration and Separation,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3