Integration of effective microorganisms and membrane bioreactor for the elimination of pharmaceutical active compounds from urine for safe reuse

Author:

Abdel-Shafy Hussein I.1,Mansour Mona S. M.2

Affiliation:

1. Water Research & Polluted Control Department, National Research Centre, Dokki, Cairo, Egypt

2. Analyses & Evaluation Department, Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, Nasr City, Cairo, Egypt

Abstract

The present study aims to investigate the efficiency of integrated effective microorganisms (EM) and membrane bioreactor (MBR) for eliminating pharmaceutical active compounds (PhACs) from urine. Natural urine was separated using a ‘diversion toilet’. The toilet users were under medication with some pharmaceuticals, namely levofloxacine (LEF), ibuprofen (IBP) and atorvastatin (ATV). For correlation, three MBR pilot-scale sequences were examined. In Sequence 1, the MBR was used without pre-treatment. In Sequence 2, EM was added as pre-treatment in the mixing tank. The effluent was further treated with the MBR. In Sequence 3, EM was added directly to the activated sludge of the MBR. The results showed that Sequence 1 could decrease the PhACs from 10 mg/L to 1.5 mg/L, 0.5 mg/L and 0.9 mg/L for LEF, IBP and ATV, respectively. Sequence 2 exhibited remarkable improvement in PhACs removal. The overall residual concentration reached 0.7, 0.13 and 0.28 mg/L for LEF, IBP and ATV, successively. Applying Sequence 3 gives higher removal efficiency, where the residual concentration of LEF, IBP and ATV decreased to 0.50 mg/L, 0.10 mg/L and 0.22 mg/L, respectively. It was concluded that the contaminated urine was efficiently treated by adding EM directly to the activated sludge of the MBR, and the treated urine can be safely used as fertilizer.

Publisher

IWA Publishing

Subject

Filtration and Separation,Water Science and Technology

Reference29 articles.

1. Wastewater reuse for irrigation on the desert sandy soil of Egypt: long-term effect;Abdel-Shafy,2006

2. Membrane bioreactor for the treatment of municipal blackwater in Egypt;Abdel-Shafy;J. Desal. Water Treat.,2011

3. Issue of pharmaceutical compounds in water and wastewater;Abdel-Shafy;Egypt. J. Chem.,2013

4. Removal of selected pharmaceuticals from urine via Fenton reaction for agriculture reuse;Abdel-Shafy;Sustain. Sanit. Pract.,2013

5. Membrane bioreactor for the removal of pharmaceutical compounds from urine;Abdel-Shafy,2014

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3