Sequestration of Pb(II) and Ni(II) ions from aqueous solution using microalga Rhizoclonium hookeri: adsorption thermodynamics, kinetics, and equilibrium studies

Author:

Suganya S.1,Saravanan A.1,Senthil Kumar P.1,Yashwanthraj M.1,Sundar Rajan P.1,Kayalvizhi K.2

Affiliation:

1. Department of Chemical Engineering, SSN College of Engineering, Chennai 603110, India

2. District Environmental Engineering Department, Tamilnadu Pollution Control Board, Ambattur, Chennai 600058, India

Abstract

In the present study, the microalga Rhizoclonium hookeri (RH) was effectively applied to remove the metal ions [Pb(II) and Ni(II)] from aqueous solution in batch adsorption mode experiments. The adsorption process was influenced by several operating parameters such as initial metal ion concentration, contact time, pH, particle size, adsorbent dose, and temperature. The maximum monolayer adsorption capacity of the RH was found to be 81.7 mg g−1 and 65.81 mg g−1 for Pb(II) and Ni(II) ions, respectively, at optimum conditions. The calculated thermodynamic parameters illustrated that the adsorption process was found to be spontaneous and endothermic in nature. Experimental data were analyzed in terms of pseudo-first order, pseudo-second order, and Elovich kinetic models. The results showed that the removal of Pb(II) and Ni(II) ions followed the pseudo-second order kinetics. The adsorption isotherm data were described using two and three parameter models. The results indicate that the adsorption data were best fitted with the Sips isotherm model. Consequently, the microalga RH with good adsorbability and reusability could be used as an effective adsorbent for the adsorption of Pb(II) and Ni(II) ions from wastewater.

Publisher

IWA Publishing

Subject

Filtration and Separation,Water Science and Technology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3