Aerobic Thermophilic Waste Sludge Treatment

Author:

Mason C. A.,Häner A.,Hamer G.

Abstract

The expansion in both industrial and municipal wastewater treatment in recent years has resulted in a major increase in the quantities of by-product sludge produced and has exacerbated problems of waste sludge treatment and/or disposal. The traditional method for waste sewage sludge treatment is anaerobic mesophilic digestion for sludges that are to be disposed of on agricultural land. Other disposal methods for untreated sludges include incineration, an option receiving increased interest, and ocean dumping, an option that is environmentally incompatable and used much less frequently today compared with 10 years ago. Sewage sludge can be considered to be a resource as far as its mineral nutrient composition is concerned. However, this resource cannot be exploited in agriculture because sludges are inevitably contaminated with noxious chemicals that partition into the sludge during either primary or secondary wastewater treatment. In the case sewage sludge, pathogenic and potentially pathogenic organisms are also present unless such contaminants are removed during treatment. Traditional mesophilic treatment under anaerobic conditions does not remove either noxious chemicals such as detergent residues or pathogenic organisms to a satisfactory degree. During the past decade, autothermal aerobic thermophilic pretreatment processes have been introduced as a complementary sludge treatment stage. Such aerobic pretreatment processes allow both the biodegradation of chemicals that are recalcitrant to anaerobic treatment and the thermal inactivation of pathogenic organisms. However, their introduction as a total treatment process for sludges is inhibited by their relatively poor conversion efficiencies as far as mineralization is concerned. In this contribution the biodegradation bacteria under aerobic thermophilic conditions will be described and discussed and concepts for biomass yield coefficient reduction that could enhance aerobic thermophilic sludge treatment process effectiveness will be introduced.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3