Biodegradation of Organic Substances by Biological Activated Carbon – Simulation of Bacterial Activity on Granular Activated Carbon

Author:

Nishijima W.1,Tojo M.1,Okada M.2,Murakami A.1

Affiliation:

1. Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184, Japan

2. Faculty of Engineering, Hiroshima University, 4-1 Kagamiyama, Higashi– Hiroshima, Hiroshima 724, Japan

Abstract

Biodegradation of organic substances by attached bacteria on biological activated carbon (BAC) was studied to clarify the advantages of granular activated carbon (GAC) as support media over conventional media without adsorption capacity with regard to biodegradation activity and community structure of attached bacteria. Anthracite (AN) was used as reference support medium without adsorbability. Low molecular organic substances with different biodegradability and adsorbability (phenol, glucose, benzoic acid and m-aminobenzoic acid) were fed into completely mixed BAC and AN reactors. The rate of biodegradation by BAC reactors fed with biodegradable organic substances was approximately 3 times as high as that by AN reactors. The difference in adsorbability of organic substances onto GAC had little effects on the rate of biodegradation. The structure of GAC with micro and macro pores did not provide better habitat for attached bacteria with regard to the size of population in comparison with anthracite without pores. The rates of biodegradation per attached bacteria for biodegradable organic substances in the BAC reactors were from 1.7 to 4.9 times higher than those in the AN reactors. GAC, as a bacterial support media, stimulated the biodegradation activity of each bacteria without increase in their population and probably with little change in their species composition. Although the number of attached bacteria on BAC was not different significantly from that on anthracite, m-aminobenzoic acid with low biodegradability was degraded only by the GAC reactor.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3